Step of Proof: fast-fib
11,40
postcript
pdf
Inference at
*
1
2
1
2
1
1
1
1
I
of proof for Lemma
fast-fib
:
1.
n
:
2. 0 <
n
3.
a
,
b
:
.
3.
{
m
:
|
3. {
k
:
.
3. {
(
a
= fib(
k
))
((
k
0)
(
b
= 0))
((0 <
k
)
(
b
= fib(
k
- 1)))
(
m
= fib((
n
- 1)+
k
))}
4.
a
:
5.
b
:
6.
b1
:
.
6.
{
m
:
|
6. {
k
:
.
6. {
(
a
+
b
= fib(
k
))
6. {
((
k
0)
(
b1
= 0))
6. {
((0 <
k
)
(
b1
= fib(
k
- 1)))
6. {
(
m
= fib((
n
- 1)+
k
))}
7.
m
:
8.
k
:
.
8.
(
a
+
b
= fib(
k
))
((
k
0)
(
a
= 0))
((0 <
k
)
(
a
= fib(
k
- 1)))
(
m
= fib((
n
- 1)+
k
))
9.
k
:
10.
a
= fib(
k
)
11. (0 <
k
)
(
b
= fib(
k
- 1))
12.
k
= 0
13.
b
= 0
a
+0 = fib(0+1)
latex
by (((if (first_bool T:b) then HypSubst' else RevHypSubst') ( 10)( 0))
)
CollapseTHEN (
C
((if (first_bool T:b) then HypSubst' else RevHypSubst') ( -2)( 0))
)
latex
C
1
:
C1:
fib(0)+0 = fib(0+1)
C
.
Definitions
,
{
x
:
A
|
B
(
x
)}
,
A
B
,
A
,
False
,
s
~
t
,
fib(
n
)
,
,
s
=
t
,
,
SQType(
T
)
,
x
:
A
.
B
(
x
)
,
P
Q
,
{
T
}
,
t
T
origin